UNCLASSIFIED

AD 291 752

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Office of Naval Research

Contract Nonr-1866 (32)

NR-371-016

SCATTERING BY A NARROW PERFECTLY CONDUCTING INFINITE STRIP IN A GYROTROPIC MEDIUM

By S.R. Seshadri

ナ 9

91 752

CV.

in the second se

October 25,1962

Technical Report No. 380

Cruft Laboratory
Harvard University
Cambridge, Massachusetts

Office of Naval Research

Contract Nonr-1866(32)

NR-371-016

Technical Report

on

SCATTERING BY A NARROW PERFECTLY CONDUCTING INFINITE STRIP IN A GYROTROPIC MEDIUM

by

S. R. Seshadri

October 25, 1962

The research reported in this document was supported by Grant 9721 of the National Science Foundation. Publication was made possible through support extended to Cruft Laboratory, Harvard University, by the U. S. Army, and the U. S. Air Force under ONR Contract Nonr-1866(32). Reproduction in whole or in part is permitted for any purpose of the United States Government.

Technical Report No. 380

Cruft Laboratory
Harvard University
Cambridge, Massachusetts

TR380

Scattering by a Narrow Perfectly Conducting Infinite Strip in a Gyrotropic Medium

by

S. R. Seshadri

Gordon McKay Laboratory
Harvard University
Cambridge, Massachusetts

Abstract

The scattering of a plane electromagnetic wave of wave-number k by a perfectly conducting infinite strip of width 2a is investigated for the case in which the surrounding medium is gyrotropic. The gyrotropic axis is taken parallel to the edges of the strip. The problem is formulated in terms of an integral equation whose solution is obtained in the form of a series in powers of ka. Expressions for the far-zone fields and the first two terms in the series for the total scattering cross section are obtained.

The scattering of electromagnetic waves by obstacles embedded in an anisotropic medium is of current interest. It is known that wave propagation in an unbounded anisotropic medium is more complicated than in isotropic space. As a consequence, the scattering of electromagnetic waves by obstacles immersed in an anisotropic medium is a difficult problem. However, there are two general categories of problems which turn out to be very similar to the corresponding problems in isotropic space. The scattering of obstacles in a uniaxially anisotropic medium belongs to the first category which Felsen has investigated systematically. The scattering in a gyrotropic medium by perfectly conducting cylindrical obstacles belongs to the second category. The generators of the cylinder are parallel to the gyrotropic axis but perpendicular to the direction of propagation of the incident wave. In this report, a simple problem of the second category is studied.

Consider a homogeneous plasma of infinite extent. Let a static magnetic field be assumed to be impressed uniformly throughout the plasma. Under certain simplifying approximations ⁽²⁾, the plasma becomes equivalent to a dielectric med um characterized by a tensor dielectric constant. A perfectly conducting infinite strip of width 2a is assumed to be embedded in such a medium and oriented so that its edges are parallel to the direction of the external magnetic field. The scattering by the infinite strip of a plane electromagnetic wave of wave-number k is investigated. Of the two polarizations, that with the magnetic vector parallel to the edges of the strip is the one which is different from the corresponding problem in isotropic space; hence only the

TR380 -2-

H-polarization is treated. A solution is obtained when the incident wavelength is much larger compared to the width of the strip i.e., ka << 1. The problem is formulated in terms of an integral equation which specifies the current induced on the strip. The integral equation is solved for ka << 1 and explicit expressions for the diffraction pattern in the far-field and the first two terms in the series for the total scattering cross section are obtained.

Formulation of the Problem:

A perfectly conducting infinite strip occupies the region |x| < a, $-\infty < y < \infty$ and z = 0, where x, y and z form a right-handed rectangular coordinate system. The medium surrounding the infinite strip is filled with a homogeneous plasma which is threaded uniformally by a static magnetic field in the y direction. Only the two-dimensional problem in which all the field quantities are independent of y is considered. Also, as was pointed out earlier, the treatment is given only to the case of the E-mode for which the nonvanishing components of the electric and magnetic fields are $E_x(x, z)$, $E_z(x, z)$ and $H_y(x, z)$. A harmonic time dependence $e^{-i\omega t}$ is implied for all of the field components. For the E-mode it may be shown that $H_y(x, z)$, the only component of the magnetic field, satisfies the following wave-equation

$$\begin{bmatrix} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} + k^2 \end{bmatrix} + H_y(x, z) = 0$$
 (1)

in the region exterior to the strip. In (1)

$$k^{2} = k_{o}^{2} \frac{\left(\varepsilon_{1}^{2} - \varepsilon_{2}^{2}\right)}{\varepsilon_{1}} = k_{o}^{2} \frac{\varepsilon}{\varepsilon_{1}}$$
 (2)

where

$$\varepsilon_1 = 1 - \left(\frac{\omega_p}{\omega}\right)^2 \left[1 - \frac{\omega_c}{\omega}\right]^{-1}$$
 (3)

$$\varepsilon_2 = \left(\frac{\omega_p}{\omega}\right)^2 \left[\frac{\omega}{\omega_c} - \frac{\omega_c}{\omega}\right]^{-1} \tag{4}$$

The gyromagnetic and plasma frequencies are denoted by ω_c and ω_n respectively. The wave-number pertaining to vacuum is k_o. Also, the components of the electric field $E_x(x, z)$ and $E_z(x, z)$ are obtained in terms of $H_v(x, z)$ as follows:

$$\mathbf{E}_{\mathbf{x}}(\mathbf{x},\mathbf{z}) = \frac{-i\varepsilon_1}{\omega\varepsilon_0\varepsilon} \quad \frac{\partial}{\partial \mathbf{z}} \quad \mathbf{H}_{\mathbf{y}}(\mathbf{x},\mathbf{z}) - \frac{\varepsilon_2}{\omega\varepsilon_0\varepsilon} \quad \frac{\partial}{\partial \mathbf{x}} \quad \mathbf{H}_{\mathbf{y}}(\mathbf{x},\mathbf{z})$$
(5)

$$E_{z}(x,z) = \frac{i\epsilon_{1}}{\omega\epsilon_{0}\epsilon} - \frac{\partial}{\partial x} H_{y}(x,z) - \frac{\epsilon_{2}}{\omega\epsilon_{0}\epsilon} - \frac{\partial}{\partial z} H_{y}(x,z) \quad (6)$$

It is obvious from (1) and (2) that the E-mode can propagate only for certain frequency ranges for which k^2 and hence $\frac{\epsilon}{\epsilon_1}$ are positive. It is assumed that the frequency is restricted to the range for which k is real and positive.

In view of (1), it is reasonable to assume that the incident field is given by

$$H_{y}^{i}(x,z) = e (7a)$$

where

$$l = \cos \theta_i, \quad n = \sin \theta_i \qquad (7b)$$

The application of Green's theorem to the volume bounded by the two sides of the strip and a cylindrical surface at infinity yields

$$H_y(x, z) = H_y^i(x, z) + H_y^8(x, z)$$

$$= e^{ik(\ell x + nz)} + \frac{i}{4} \int_{-a}^{a} \left[I_2(x') + I_1(x') \frac{\partial}{\partial z} \right] H_0^{(1)} \left[k \sqrt{(x-x')^2 + z^2} \right] dx'$$
(8)

where

$$I_1(x) = H_y(x, 0^-) - H_y(x, 0^+)$$
 (9a)

and

$$I_{2}(x) = \frac{\partial}{\partial z} H_{y}(x, 0^{-}) - \frac{\partial}{\partial z} H_{y}(x, 0^{+}) \qquad (9b)$$

The integral in (8) evidently gives the scattered field $H_y^s(x,z)$. On the surface of the strip, since it is perfectly conducting, the tangential component of the electric field vanishes and hence, the following boundary condition

$$E_{x}(x, 0^{+}) = 0 \quad \text{for } |x| < a$$
 (10)

holds. With the use of (9) and (10) in (5), it follows that

$$i\varepsilon_1 I_2(\mathbf{x}) + \varepsilon_2 \frac{\partial}{\partial \mathbf{x}} I_1(\mathbf{x}) = 0$$
 (11)

The value of $I_2(x)$, as obtained from (11), is substituted in the integral in (8) and an integration by parts is carried out. The surface current $I_1(x)$ on the strip, since it is normal to the edge, is zero for x = 0. Hence,

$$H_{\mathbf{y}}(\mathbf{x},\mathbf{z}) = e^{i\mathbf{k}(\mathbf{\ell}\mathbf{x}+\mathbf{n}\mathbf{z})} + \frac{1}{4} \int_{-a}^{a} \left[\frac{\partial}{\partial \mathbf{z}} + \frac{\varepsilon_{2}}{\varepsilon_{1}} - \frac{\partial}{\partial \mathbf{x}} \right] \mathbf{I}_{1}(\mathbf{x}') \mathbf{H}_{0}^{(1)} \left[\mathbf{k} \sqrt{(\mathbf{x}-\mathbf{x}')^{2}} + \mathbf{z}^{2} \right] d\mathbf{x}'$$
(12)

The substitution of (12) in (5), together with the boundary condition (10), yields the following integral equation:

$$\left(\frac{\theta^{2}}{\theta x^{2}} + \frac{k^{2} \epsilon_{1}^{2}}{\epsilon}\right) \int_{-a}^{a} I_{1}(x^{i}) H_{0}^{(1)}[k|x-x^{i}|] dx^{i} = \frac{4k \epsilon_{1}^{2}}{\epsilon} (n - \frac{i \ell \epsilon_{2}}{\epsilon_{1}}) e^{ik\ell \epsilon}$$
for $|x| < a$. (13)

Solution of the Integral Equation for ka << 1

The solution of the differential equation (13) for the integral yields

$$\int_{-a}^{a} k \left(n + i\ell - \frac{\varepsilon_{2}}{\varepsilon_{1}}\right) I_{1}(x') H_{0}^{(1)} \left[k \mid x - x' \mid \right] dx'$$

$$= \frac{ik\ell x}{4e} + Ce + Ce + De \qquad for \mid x \mid < a.$$
(14)

The arbitrary constants C and D are determined by the requirement that $I_1(\pm a) = 0$. It is noticed that the integral equation (14) is similar to the one obtained in the treatment of the problem of scattering by a narrow, unidirectionally-conducting infinite strip⁽³⁾. Therefore, the solution of (14)

can be written down by making use of the solution obtained in [3]. For that purpose let

$$x' = a \cos v \tag{15}$$

$$(n + i\ell \frac{\varepsilon_2}{\varepsilon_1}) I_1 (a \cos v) = \sum_{n=0}^{n=\infty} f_n (ka)^{n+1}$$
 (16)

The solution of (14) is then given in the form

$$f_{2n} = \sum_{r=0}^{r=n} a_{2n, r} \sin (2r + 1) v$$

$$f_{2n+1} = \sum_{r=0}^{r=n} a_{2n+1, r} \sin(2r+2)v$$
 n=0, 1, 2... (17)

where

$$a_{0,0} = \frac{2i\beta_{0}}{\pi}$$

$$a_{1,0} = -\frac{3\beta_{1}}{2\pi}$$

$$a_{2,0} = -\frac{2i\beta_{0}\gamma_{2}P}{\pi} + \frac{i\beta_{0}\gamma_{2}}{\pi} + \frac{i\beta_{0}P}{2\pi} + \frac{i\beta_{0}}{8\pi} - \frac{3i\beta_{2}}{\pi}$$

$$a_{2,1} = \frac{i\beta_{0}}{24\pi} - \frac{i\beta_{2}}{\pi}$$

$$a_{3,0} = \frac{\beta_{1}}{8\pi} - \frac{3\beta_{1}\gamma_{2}}{4\pi} + \frac{5\beta_{3}}{2\pi}$$

$$a_{3,1} = \frac{5\beta_{3}}{8\pi} - \frac{\beta_{1}}{64\pi}$$

÷

$$a_{4,0} = \frac{15i\beta_4}{4\pi} - \frac{3i\beta_2 p}{4\pi} - \frac{i\beta_2}{4\pi} + \frac{3i\beta_2 \gamma_2 p}{\pi} - \frac{3i\beta_2 \gamma_2}{4\pi}$$

$$+ \frac{13i\beta_0}{384\pi} + \frac{3i\beta_0 \gamma_2 p}{8\pi} - \frac{i\beta_0 p}{32\pi} - \frac{i\beta_0 \gamma_2 p^2}{\pi} - \frac{2i\beta_0 \gamma_2^2 p}{\pi}$$

$$+ \frac{2i\beta_0 \gamma_2^2 p^2}{\pi} + \frac{i\beta_0 \gamma_2^2}{2\pi} + \frac{i\beta_0 \gamma_2}{16\pi} + \frac{i\beta_0 p^2}{8\pi} + \frac{3i\beta_0 \gamma_4 p}{\pi} - \frac{3i\beta_0 \gamma_4}{2\pi}$$

$$a_{4,1} = \frac{15i\beta_4}{8\pi} - \frac{i\beta_2}{32\pi} + \frac{i\beta_0 \gamma_4 p}{\pi} - \frac{i\beta_0 \gamma_4}{2\pi}$$

$$- \frac{i\beta_0 \gamma_2 p}{24\pi} + \frac{i\beta_0 \gamma_2}{48\pi} - \frac{i\beta_0 p}{192\pi} - \frac{i\beta_0}{512\pi}$$

$$a_{4,2} = \frac{3i\beta_4}{8\pi} - \frac{i\beta_2}{160\pi} - \frac{i\beta_0}{7680\pi} \qquad (18)$$
and
$$\beta_{2n} = \frac{2\pi}{(2n+2)!} \left[\ell^{2n+2} - \varepsilon_1^{2n+2} \varepsilon^{-(n+1)} \right]$$

$$\beta_{2n+1} = \frac{\ell}{(2n+2)} \frac{\beta_{2n}}{2n!}$$

$$p = \log \frac{\gamma ka}{4} - \frac{\pi i}{2}$$

 $\log \gamma = 0.5772157$ is Euler's constant

(19)

Total Scattering Cross Section

The total scattering cross section σ per unit length of the strip is given by $\frac{p^s}{s^i}$, where p^s is the total power scattered per unit length of the strip and s^i is the incident power flow through unit area normal to the direction of the incident wave. The integration of the real part of $\nabla \cdot \overrightarrow{E}^{s*} \times \overrightarrow{H}^{s}$ throughout the volume bounded by the two sides of the strip and a cylindrical surface at infinity leads to

$$p^{8} = \frac{1}{2} \operatorname{Re} \int_{-a}^{a} E_{x}^{i^{*}} (x^{i}, 0) I_{1}(x^{i}) dx^{i}$$
 (20)

Also.

$$S^{i} = (t\hat{x} + n\hat{z}) \cdot \frac{1}{2} \operatorname{Re} [\hat{x} E_{x}^{i*} + \hat{z} E_{z}^{i*}] \times \hat{y} H_{y}^{i}$$
 (21)

The use of (5) and (7a) in (20) and (21) yields for the normalized scattering cross section

$$\frac{\sigma}{2a} = \frac{p^{s}}{2a s^{i}} = \frac{1}{2a} \operatorname{Re} \int_{a}^{a} (n + i \ell \frac{\epsilon_{2}}{\epsilon_{1}}) e^{-ik\ell x'} I_{1}(x') dx' \qquad (22)$$

The use of (15) - (17, in (22) gives the first few terms in the power series of $\frac{\sigma}{2a}$ to be

$$\frac{\sigma}{2a} = \frac{\pi}{4} \text{ Re } \sum_{n=0}^{\infty} t_{2n+1} (ka)^{2n+1}$$
 (23)

Ç

where

$$t_{1} = a_{0,0}$$

$$t_{3} = a_{2,0} - \frac{i l a_{1,0}}{2} - \frac{l^{2} a_{0,0}}{8}$$

$$t_{5} = a_{4,0} - \frac{i l a_{3,0}}{2} - \frac{l^{2}}{8} (a_{2,0} + a_{2,1}) + \frac{i l^{3} a_{1,0}}{24} + \frac{l^{4} a_{0,0}}{192} \qquad (24)$$

The use of (18), (19) and (24) in (23) gives the first two terms in the total scattering cross section. These are

$$\frac{\sigma}{2a} = -\frac{\pi (ka)^3}{4} \beta_0 (\gamma_2 - \frac{1}{4}) + \frac{\pi}{4} - (ka)^5 \left[\frac{\beta_2 \ell^2}{8} (\gamma_2 - \frac{1}{4}) + 2\beta_0 d (\gamma_2 - \frac{1}{4})^2 - \frac{3\beta_0}{4} (\gamma_2^2 - \frac{\gamma_2}{4} + \frac{1}{48}) + \frac{3\beta_2}{2} (\gamma_2 - \frac{1}{4}) \right]$$
(25)

where

$$d = \log \frac{\gamma ka}{4} \qquad (26)$$

With the use of β_0 and γ_2 from (19), the leading term in (25) for normal incidence becomes

$$\frac{\sigma}{2a} = \frac{\pi^2}{16} (k_0 a)^3 \left(\frac{\varepsilon_1}{\varepsilon_1^2 - \varepsilon_2^2} \right)^{\frac{1}{2}} (\varepsilon_1^2 + \varepsilon_2^2) \qquad (27)$$

From (27), it is obvious that for normal incidence the total scattering cross section of a narrow, infinite strip in a plasma medium is enhanced when the

plasma is rendered gyrotropic by the application of a uniform, static magnetic field parallel to the edges of the strip.

Diffraction Pattern in the Far-Zone

It is desired to find the expression for the scattered field H_y^s (x, z) in the far-zone. With $x = \rho \cos \theta$, $z = \rho \sin \theta$ in (12) and with only the leading term in the asymptotic expansion of the Hankel function for large ρ , it is found that

$$H_{y}^{s}(\rho, 0) = \frac{-k}{4} - \sqrt{\frac{2}{\pi k \rho}} \quad e^{i(k\rho - \frac{\pi}{4})} \int_{-a}^{a} \left[\sin \theta + i \frac{\epsilon_{2}}{\epsilon_{1}} \cos \theta \right] I_{1}(x') e^{-ikx' \cos \theta} dx'$$
(28)

The use of (15) - (17) in (28) gives

$$H_y^s(\rho, 0) = -\frac{1}{4}\sqrt{\frac{\pi}{2k\rho}} e^{i(k\rho - \frac{\pi}{4})} \sum_{n=0}^{\infty} T_{2n+1}(ka)^{2n+2}$$
 (29)

where T_{2n+1} is the same as t_{2n+1} with ℓ replaced by $\cos \theta$. In particular, the leading term in (29) is obtained with the use of (24), (18) and (19). It is

$$H_{y}^{s}(\rho, \theta) = \sqrt{\frac{\pi}{8k\rho}} e^{i(k\rho - \frac{3\pi}{4})} (k_{o}a)^{2} \frac{\left(\varepsilon_{1}^{2} - \varepsilon_{2}^{2}\right)}{\varepsilon_{1}} \left[\cos^{2}\theta - \frac{\varepsilon_{1}^{2}}{\varepsilon_{1}^{2} - \varepsilon_{2}^{2}}\right]$$
(30)

When the plasma is isotropic, it is easily seen from (30) that $H_y^{8}(\rho, \theta)$ has a null for $\theta = 0, \pi$. The result is in accordance with the general law that the

tangential component of the magnetic field, in an isotropic medium, is undisturbed even in the presence of the strip, in its plane but exterior to it. However, when the medium is rendered gyrotropic by the application of an external magnetic field parallel to the edges of the strip, $H_y^s(\rho, \theta)$ as given in (30), has no null since $\frac{\varepsilon_1^2}{\varepsilon_1^2 - \varepsilon_2^2}$ is greater than unity.

It has been stated earlier that the results of this scattering problem are valid only for the range of frequencies for which $\frac{\varepsilon}{\varepsilon_1}$ is positive. With the help of (2) - (4), it is possible to show that $\frac{\varepsilon}{\varepsilon_1}$ is positive only for the frequency ranges given by

$$\omega_{\rm p}^2 + \frac{\omega_{\rm c}^2}{2} - |\omega_{\rm c}| \sqrt{\omega_{\rm p}^2 + \frac{\omega_{\rm c}^2}{4}} < \omega^2 < \omega_{\rm p}^2 + \omega_{\rm c}^2$$
 (31a)

and

$$\omega_{\rm p}^2 + \frac{\omega_{\rm c}^2}{2} + |\omega_{\rm c}| \sqrt{\omega_{\rm p}^2 + \frac{\omega_{\rm c}^2}{4}} < \omega^2 < \infty$$
 (31b)

Hence the results are valid only for the frequency ranges given by (31). Also, it can be shown that k becomes very large near $\omega = \sqrt{\omega_{\rm p}^{\ 2} + \omega_{\rm c}^{\ 2}}$. Therefore, the analysis presented in this report is not valid near $\omega = \sqrt{\omega_{\rm p}^{\ 2} + \omega_{\rm c}^{\ 2}}$.

Acknowledgements

The author is grateful to Professors Ronold W. P. King and Tai Tsun Wu for their help and encouragement with this research.

References

- L. B. Felsen, "On diffraction by Objects in a Uniaxially Anisotropic Medium," Memorandum No. 83, PIBMRI-1073-62, Polytechnic Institute of Brooklyn, August 1962.
- S. R. Seshadri, "Excitation of Surface Waves on a Perfectly Conducting Screen Covered with Anisotropic Plasma," Technical Report No. 366, Cruft Laboratory, Harvard University, May 1962.
- 3. S. R. Seshadri, "Scattering by a Narrow Unidirectionally Conducting Infinite Strip, "Can. J. Phys. Vol. 38. pp 1623-1631, 1960.

Librarian

U 9 Department of Commerce
National Surveys of Standards
Boulder, Colorado

Dr Earl Cales Hotesa-Soursy Agesty Physical Science Division Fort George Meads, Marylani

Dr H. Congoigns Hullenti Security Ageory Physical Sciences Division Fort George Meeds, Maryland

Ching Kong University
Electrical Engineering Departs
Towns, Tairon
Republic of China
Ann. Policion China
Keed, Eng. Department

Mr D S Joses Department of Mathematics Univ College of No. Staffordaler Kane, Staffordalers, England

Professor Paul Santi Mito Coulo City Tuiversity Dept of Engineering Sciences 18 Mahi Ogenskii Knoles Cooks, Japan

Donald C. Streem
Dept. of Economical Ergs
Curvatury of Affacts
Torons 83, Asiana

Protector Charton Paths Department of Physics Univers y al California Berbaloy 4, California

Problems Jorens L. Stager Div. of Electric I Englacering Chiestotry of California Berbing S. California

Professor H. G. Booker School of Electrical Englescoring Cornell University Maca, New York

E. A. Chapman, Johnsons Reservisor Polytechnic Include Amor Esten Itali Tray, New York

Refers Pleasey
Department of Department
Case Instrume of Technology
Descriptly Device
Coroland 6, Obso

Dopt. of Electrical Enganeering Case Institute of Yocheslogy Delwestry Circle Cleveland 6, Ohio Ama 8 Seety, Nand

Dr C J Falberhark Steelie Homorial Institute Columbra, Chie Arta Electrical Engineering Divi

Librariae Englacering Library Serves Curvertury Providence, Shode Island

Mr William Way Research Librarian Tasker Instruments Corp 1109 Calmongs Soulevard Hollywood II, Calciornia

Professor R. R. Norberg Dr. Gramost of Physics Westington University Rt. Linic, bilineoust

By Sidney Staping Arrhor D Lattle, Inc 13 Acora Past Cambridge 60 Mossach

hir Wilham H From Even Knight Corporation 214 A Brost Heedham, Massachusette

Dr Edward V Conden 6004 Watermen, Areans & Louis, Missesseri

Do W M Walch Boll Tolophone Labo , Inc Marroy Hall, Mee Jaraay

Labrarian IBM Watern Laberatories 612 West 115th Breed New York 27 New York

Mr L. E Suarto Jr Suideng 12 Bonn 2017 Hugher Sponarch Labors Culver Caty, California

Professor O E M Rydback P O Jon 266 Balmar New Jersey

Dr Boron Poser Lacrola Laboratorica San 73 Louingran, Marcorbia

Microvave Econorch Institute Polytechnic Institute of Brooklyn 11 Johnson Broot Brooklyn, New York Atta Librariga

Professor A. W. Stration Dopt. of Electrical Segie, wring Varietisty of Tome Acoba 12, Tome

Activity Supply Cifficer Smilling 2504, Charles Wood Area Fort Menmouth, New 212047 (30) Afts. Discusses of Recompts. Commander (2) U.S. Noval Electronics Lab Sea Diogn, California Commoder

Vingle Air Decorphism Conne

Vingle Processon Air Force Base

Our

Airs WCREX

Library

Libraria

From 91, Northwest Building

Vanishing WCREX

Libraria

Libraria

From 91, Northwest Building

Vanishing WCREX Commenting Gonero, RCRW Rome Air Development Gonero Der Men Air Force Bess (2) Rome, Non-York Communiting Officer
Office of North Zerocorch
Ravy 190, See 29 (27)
Floot Poot Office
New York, New York Commanded
Air Force partings of Tecanings
Wright Publices Air Force Sees
Chie
Adm. MCLI Library Commanding General Air Recedenth and Develope P. O. Son 1915 (2) Sectioners, Maryland Ams. 82008 AF Special Wespens Coster Riritand Air Force Seco "Impergue, New Mon." Ann. SWCE Commonder
Air Torce Cambridge Research Labe
Laurence G. Hasserm Flad (2)
Bedford Hassechuseme
AMA CROTUS Am. SWC:

Mendiquence
Ary Minister Tem Center
Int-135, ADMC
Postula Adm Perco Base
Provide
100 S. Recot Guard
100 S. Breat, "Y W
Value dea 31, 3 C
Am. ESS. The Director
Physic Leonard Laboratory
Warnington 29 D. C. (6)
Arm. 1 whereal Information Office Commander
Wright Air Development Conter
Wright Panesees Air Force Bose
Ohis
Arta WCLRA Library Commender AF CRL AFRD, ARDC, CRR,C Lancace C. Hasseon Fu'S (4) Bedford, Monoschoolin Amis Electrosics Received Decet Pinkenel Security Agency Physical Science Division (2) Fort Coorge Stocks, Maryland Arm Dr. Ajvin Mechat Ann EXE

An Experience, Chef

For Experience Dynamic

Fortiers of Western Dynamic

Fortiers of Western Dynamic

Repail Corps Agency

Fortier Geometry

Fortier Officer

Fortier Commending Occord Air Recognit and Duron P. C. Sen 1993 (3) Relitators J. Mary, and After RLTERP Associate Prof. A. Reprises Department of Electrical Enginee Enveroncy of Sembres California University Park Lee Angoine T. California Chief of Haval Research
Department of the "hery (2)
Weekington 15 D C
Amn. By A Sheevel, Code 627 Assistant Secretary of Defense (Receive and Decomposes) Receive and Decomposes Board Department of Defense Ventrages 23 D.C. Chief of Haval Research Department of the Neve (2) Wookington 25, D C Artn. Code 427 Chef. European Office ARDC Command Soil Building 60 See Harcastota Braceau Bougham Fottenandung Officer Office of State. Research 915 Summer Street (2) Bessee, Massacherung Sizet of heres Operations Department of the Mary Washington 45, D. C. Ana. Op. 18 Vacination Am Operations Department of the Saray Vacination 25, D C Ara Op 12 Dr. 7. Aeren Holman Oranneze Moromare Ben. Offices Waterneum Arsenni Waterneum, Massachusette Chief, Europe of Shape Department of the Newy (2) Techniques 29 D C Ame, Code 819 Acquierrano Officer
ASTA Reference Connes
Aringen Ral Beales
Aringen Ral Beales
Aringen Ral Virginia
Tellinen, Secondarente Director Are Conversely Liberty (2) Memory Air Porce Bose Antone Chief of Neval Operations Department of the Yeary Weshington 25 D C Ann. Op 413 Pandord Research sements Documents Conter Home Park, California Ama Hary Los Faite Chief of Physal Research Department of the Hery Westington 25 D C Arts: Code 421 Chel, Beress of Assessable Department of the Heavy Weshington 25 D C Arts El 4 Dr C N Papes
Dort of Electrical Engineering
California Engineering
California Engineering
California Engineering
Divisionly Minddle
Pencilone, California
Pencilone, California
Pencilone, California
Pencilone, California Commanding Officer Office of Street Accouncy 415 Summer Street Section, Massachusetts Technical Library V S News Proving Ground Dahlgron, Vrignan Stanber Eintroner Lat Basher Coursely Basher, Cabbrea Am December Libery Applied Electronics Lab Commanding Officer
Commanding Officer
Office of Shoul Research
John Corners Lisearcy Paiding
56 East Rendolph Press
Chicago I, Shaote Director Marci Ordenace Laboratory Flate Call, Maryland Department of Electrical Engi-Teas Conversory New Merce, Connecticus V 5 minutery Colleges
Art Force Ottes of Scientific Essentich
Art Force Ottes of Scientific Essentich
Art Force Ottes of Scientific Essentich
Art Ester Ottes of Scientific Essentich
Art Ester Ottes of Scientific Essentich
Art Ester Ottes Ottes Ottes of Scientific Essentich
Art Ester Ottes Otte Commanding Officer Office of Hamil Research 346 Breadony New York 13, New York Commanding Officer Office of Street Processes 1830 East Oroca Resot Possesson, Cabberna Ann SET, Pryto Dinness
Commande, Control
Roma Air Development Control
Roma Air Development Control
Roma Air Development
Air Set Development
Air Set Set
Air Set Set
Air Set Set
Air Set Development
Commander
Commander
Commander
Commander
Commander
Air Development
Air Set
Air Set Commanding Officer Office of Noval Research 1806 Gody Brook No Francisco T California Director, Lincoln Enboratory More Sections of Technology Sections, Measurchespus Total, December Section Technical Information Division Wreal Secount's Laboratory Washington Si, D. C. Mr John House Document Room Research Lab of Electronics Mass Institute of Technology Combridge 29, Massachusotta Mortin A. Chryson Magnetian Beyonk, Code 6439 Sand Base Bresses Noval Recourtyk Laboratory Weekington 15, B. C. Professor A Yes Shapel More Incident of Technology Lab for Invalidon Research Combridge 31, Massachusette Commander
Air Force Cambridge R rearch Conter
114 Alliany Birsel
Cambridge 11 Massachusows
Ama CREM Communication Princips
U.S.M. Air Development Conner
Johnsteile Prescriptons
Amb HADC Library Combridge 19, Miscoschworth Library, Room & 124 Library, Room & 124 Library Li Ami Linan
Cramander
AF Cambridge Research Laboratories
Lineraces G. Hancean Fluid
Zelderd, Mercel Lacora
Ami Bv. Helkingroorth Commandor V S N Air Dovolopment Contr Johnsville, Pennsylvinia Amn AASL Chef, Europe of Auropayrice Department of the Mary Technique 25, D C Ama El I Commander
Wright Air Development Cotter
Tright Patteroon Air Force Saco
Clea
Ame WCR2 United Training of Michilages

William Das Airpayer

Tyricolose, Michilages

M Sanda Corneration Org. 1624 Sanda Base Alburquarque, New Montes Ama Dr. C. W. Shartoon, Ze Englesoring Librarian Counts See Diego 13 Cabierna De John E Pappin Applied Physics and Forms Duvices Sporry Microwave Electronics Co P O Sen 1828 Cleberator Florida Bradia Corporation Bradia Base Alterquerque Nov Monico Alta Labrary Division 1922 2 Engineering Labrary Sporry Micropany Electronics Co Cincrestor Florida Mr. Robert Turner Gronzel Electronice Company Abrane of Electronice Cocker Curtall Payversaty 5 inca. New York Mr. A. Souke Homes Technical College Shanes, Japan j. brory Arberne Indrumente Lab Will Whitman Bond Milwille, Long Island New York Electronics Remarch Laboratory Divisions of Electrical Engineering University of California Perhology & California Restology & California Atta Labrarian Elizareth Weste Labrarian Raythorn Company 128 Seyna Bress Walthern Mr. Massachusetta Sections Working Group Seniconductor Devices 14t Breadeny Sta Floor New York 13 New York Aria AGET Alle Libraries
John Neglesco Usur rary
John And Charles Broot
Montead RB
Balkinore 18, Maryinad
Ar. Ji 7 O Artenna
Laberron
Peyrons Deportment
Annier's College
Annie 1 Messacheurts
Annie 1 Messacheurts
Annie 1 Messacheurts Report Librarian

Pyreant Electric Praducts Inc
Electric Pyreant Division
130 First Avenue
Validam Mason bisotte Melais Research Laboratorius Eintire Metalbergecal Company Bus 500 Phages Palls New York Arm Mr. B. J. Globen Document Control Conter Wayland Library Esythem Manufacturing Co Wayland, Missachusette Lowerian Cotorel Electric Research Lab P O See 1888 Schemetady New York 7 E Coldman
Scientific Educatory
Ford Meter Company
Engineering Ball
P O Sez 2753
Doorborn, Achigan Professor I Lowe Department of Physics University of Managers Managers of Managers Westinghouse Electric Corp Revereb Laboratorius Besish Josef Churchill Sero Priteburgh 35 Pennsylvania ELECTROMAGNETIC RADIATION ONLY Prof O E M SpMach P O Box 264 Camer New Jorsey Microscop Research Jerester Polyteche Tunner of Breeklyn 15 Johnson Resea Breeklyn, New York

One Copy Waless Otherwise Specific